

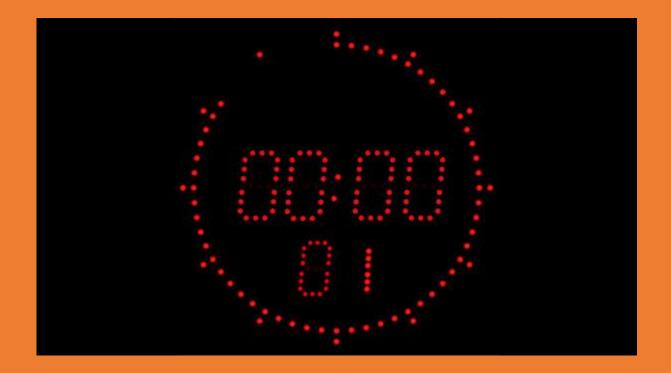
1. Short Time scale

(2) Long time scale / (3) Other time considerations / (4) Calendars

The Problem

Solar day on Mars (« sol ») = 24h39m 35 sec.244147

To be compared to


Solar day on Earth = **24h00m** 00sec. 002

i.e

Conversion factor 1.0275 days / sol

Only One Solid Universal Base Reference : the Second

the **second** has been **defined** as 9,192,631,770 times the period of the radiation corresponding to the transition between the two hyperfine levels F3 and F4 of the $^{6}S_{1/2}$ ground state of the caesium-133 atom

Possible Solutions

(a) Keep using the terrestrial time reference and adjust it to the length of the Martian day by 39 '35".24 every night

But

Problem of time zones on Mars

Problem of Earth imported machines functioning on clocks, applied to measuring Martian days or fraction of Martian days

(b) Use a Martian hour = $1/24^{th}$ of a Martian day (x 1,0275% times an Earth day)

But

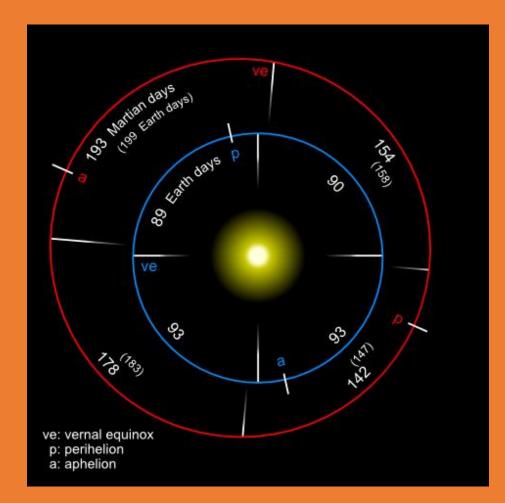
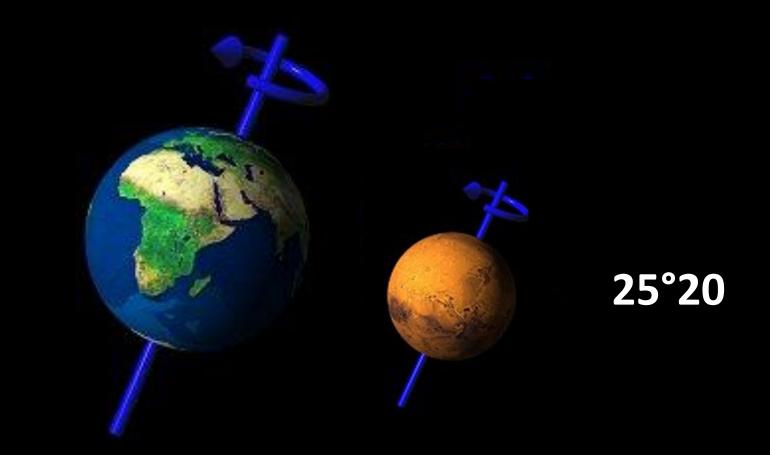
Problem for using equipment functioning on Earth referenced clocks Problem for communicating with Earth

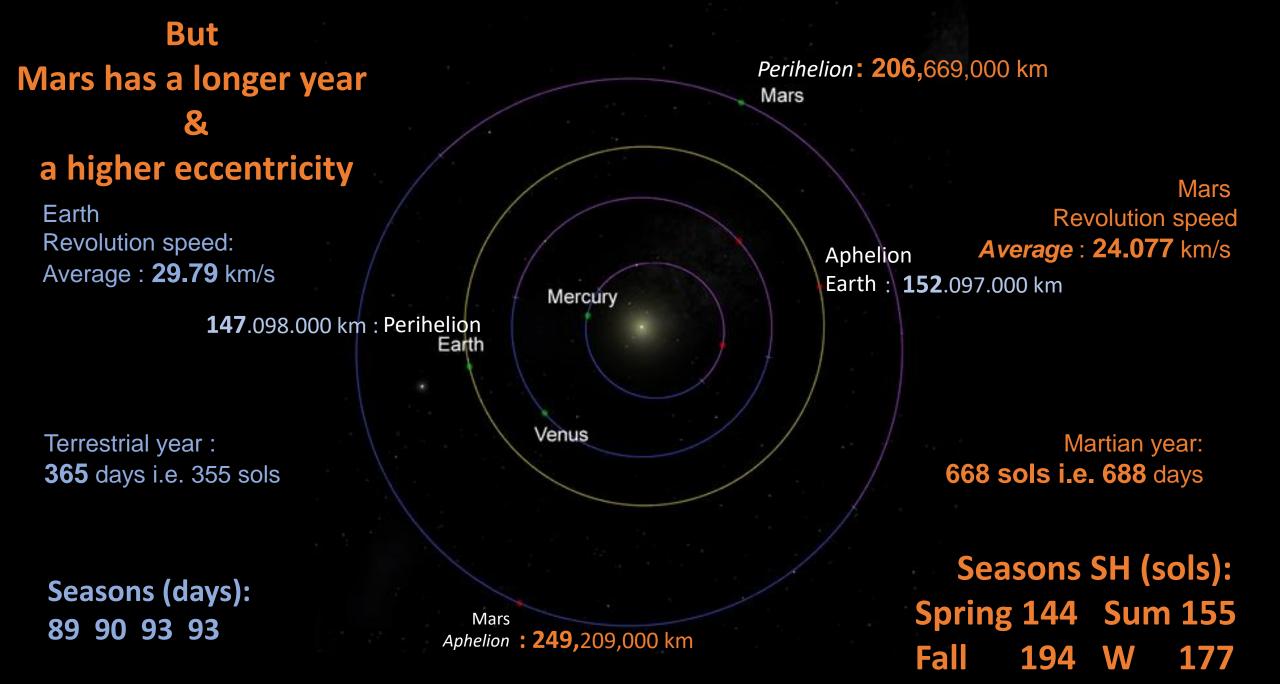
Problem of adaptation to any other « local » time outside Earth

→ Realistic Solution:

Use both time measurement systems

2. Long Time scale


Image credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.

Obliquity = Seasons!

23°44

Today, October 26th, 2018, we just passed the Winter solstice (Oct. 16th NH)

Seasons in the Northern Hemisphere The dates!

Spring	Summer	Fall	Winter
equinox	solstice	equinox	solstice
May OF	Nov 20		Oct 16
May 05 2017	2017	May 22 2018	2018
March 23	Oct 08	April 08	Sept 02 2020
2019	2019	2020	2020

Solutions

(a) Keep using terrestrial months

But

They would cover only 53% of the Martian year Only the first half of the first month would have a shared meaning.

(b) Divide the year in 4 seasons and 12 months to follow the evolution of the Martian climate along the year

But

Keep the terrestrial reference to interact with Earth; Keep the terrestrial reference to follow the evolution of our own biologic time;

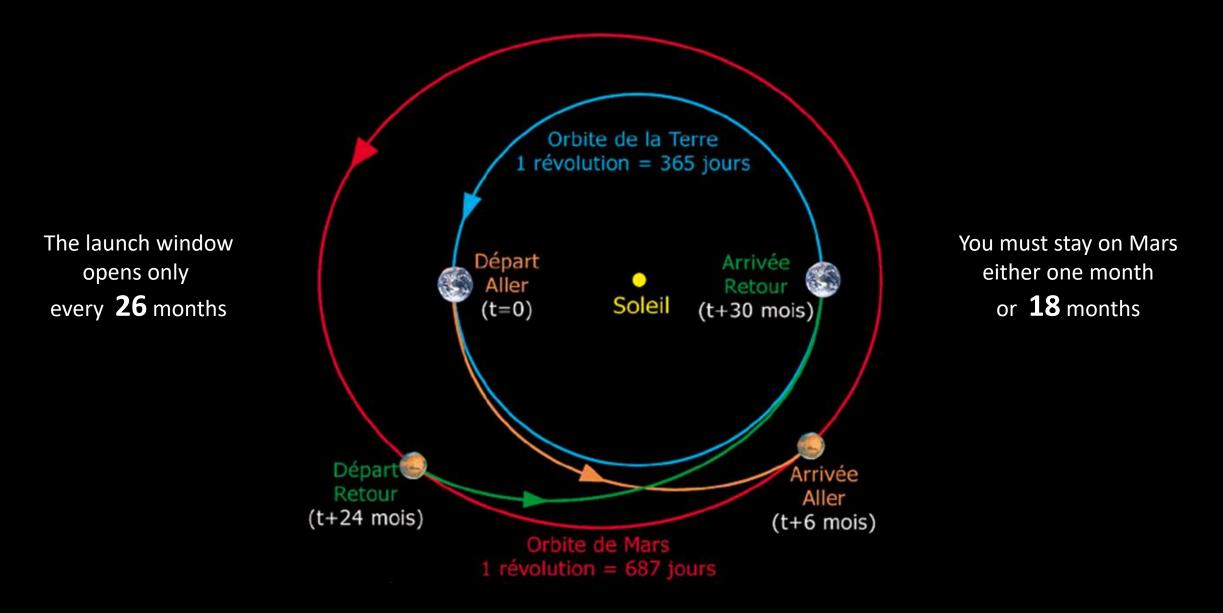
→ Solution: Use both measures of Time

3. Other Time considerations

Reference points

Choice of year-zero:

For some people, Dec. 29th, 1873, as chosen by Royal-astronomer, Sir George Biddell Airy; In practice, for each mission, a time count from landing; For the Colony, most likely a time count from the date of landing of the **Founding Flight**, The universal time count, from the official birth of Jesus-Christ, will remain in force.


Beginning of the year:

Most likely the vernal point in the NH (no terrestrial logic to take into account)

Meridian Zero:

Located in Crater "Airy-0", in the Sinus Meridiani area Latitude 5,1 ° S, in the North-West of Noachis Terra, South of Meridiani Planum; Chosen in 1969 by Merton Davies, a Mars cartographer, on the basis of Mariners' photos. This crater does not present any particular features

A LONG TRIP...POSSIBLE ONLY WHEN A WINDOW OPENS

Special events

Departures dates from Earth (N-6)

Arrival dates from Earth (N)

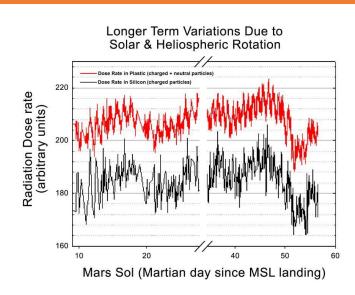
Departure dates towards Earth (N+18)

Conjunction weeks of Earth with Sun every 26 months

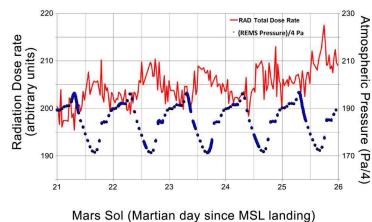
Influence of climate on daily, seasonnal, annual activities

Normal daily radiations variations

Seasonal irradiance variations


Solar maximum (5 Martian years cycle) ± 11 Earth years

Dust global storms (± 3 Martian years cycle)


If you want to do EVA, do it early morning

Radiations

Daily Variation of Radiation Dose on the Mars Surface

If you want to use Sun's energy, do it in Summer in the SH!

492 to 715 W/m² (Jupiter 50 W/m²; Saturne 10W/m²)

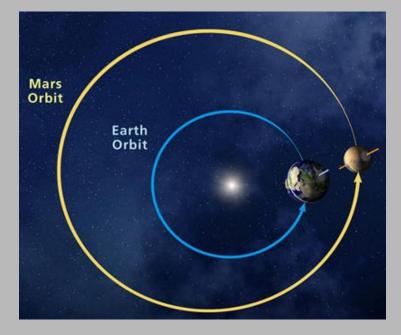
Earth: 1.321 to 1.413 W/m² (Vénus 2.600 W/m²)

Mars:

Cratère Endeavour, bord occidental. Crédit: NASA/JPL-Caltech/Cornell/ASU

4. Calendars

Dr Pierre-André Haldi Engin.-physicist EPFL pierre.haldi@epfl.ch


Μ

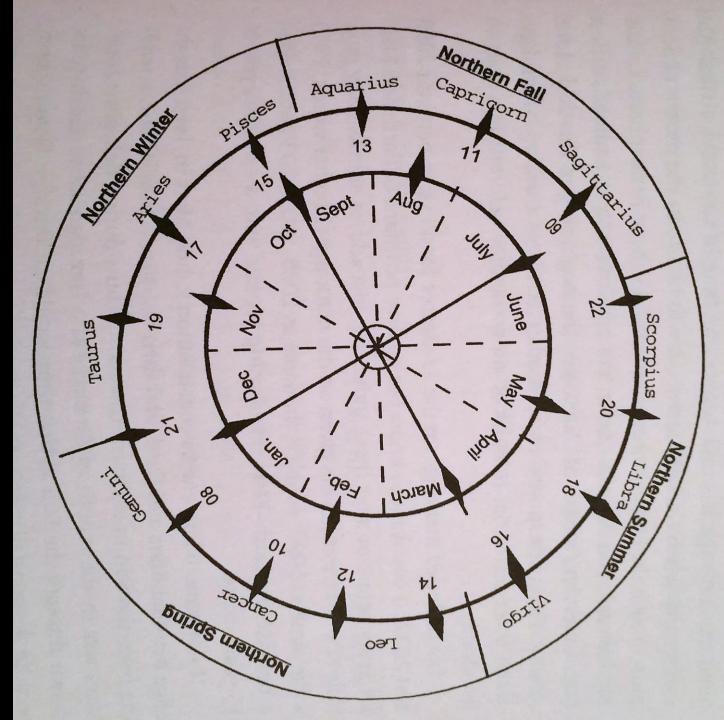
Months

Proposal of martian clock and calendar

Division of the martian year :

lonth	Odd year [marsols]	Total	Even year [marsols]	Total
1	28	2.8	28	28
2	28	56	28	56
3	28	84	28	84
4	28	112	28	112
5	28	140	28	140
6	27	167	27	167
7	28	195	28	195
8	28	223	28	223
9	28	251	28	251
10	28	279	28	279
11	28	307	28	307
12	27	334	27	334
13	28	362	28	362
14	28	390	28	390
15	28	418	28	418
16	28	446	28	446
17	28		28	
18	27	501	27	501
19	28	529	28	529
20	28	557	28	557
21	28	585	28	585
22	28	613	28	613
23	28	641	28	641
24	27	668		669

Advantages:


- . simple (good regularity)
- . close to the terrestrial months
- . suitable with monthly schedules (e.g.: salary)
- . good agreement with the real martian year

Mars unequal seasons

Year divided in quarters From equinoxes to solstices

Each quarters divided In three months

Names of Zodiac constellations

Rotation Speeds Mars 26.5 km/s at perihelion 21.9 km/s at aphelion

> Earth 29.79 km/s

Southern Hemisphere Mars:

Spring 144 sols

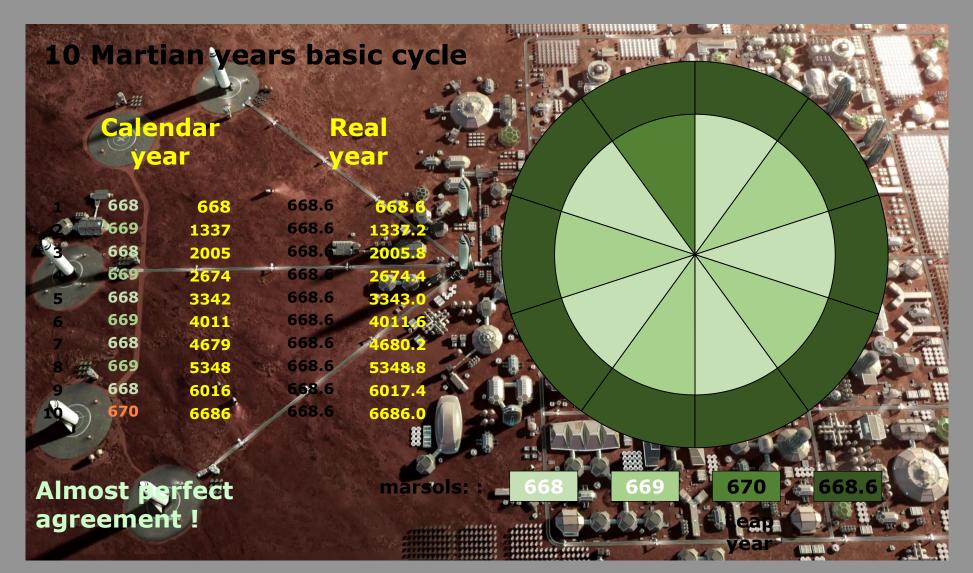
Summer 155 sols

Fall 194 sols

Winter 177 sols

My own proposal for a Martian calendar

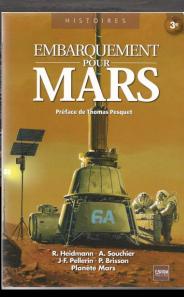
Stick to the Martian seasons (= Mars climatic reality)


Stick to the « good old » twelve months system

Split each season in three months, equal in length between themselves48516459Split each month into halves, « ascending » and « descending » periods2425/263229/30Sh/NhS/WF/SprW/SSpr/F

Dr Pierre-André Haldi Engin.-physicist EPFL pierre.haldi@epfl.ch

Years


Proposal of martian clock and calendar

See you there!

EXPLORATION SPATIALE

https://blogs.letemps.ch/pierre-brisson/

Updated and revised to include the latest information about Mars exploration

THE CASE FOR MARS THE PLAN TO SETTLE THE RED PLANET AND WHY WE MUST

ROBERT ZUBRIN WITH RICHARD WAGNER Foreword by Arthur C. Clarke